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1. Introduction

We study the regression model

Yi = θ0(zi) +Wi, i = 1, . . . , n, (1.1)

where Y1, . . . , Yn are independent real-valued observations, z1, . . . , zn are covariables with val-
ues in some space Z, θ0 is an unknown regression function, and W1, . . . ,Wn are measurement
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errors. At the values z1, . . . , zn, the regression function θ0 is defined by means of a given
convex loss function γ : R → R. Namely, we require for each b ∈ R, that the expectation
Eγ(Yi − b), is finite and moreover that b 7→ Eγ(Yi − b) has a unique minimum in b = θ0(zi).
Thus, when γ(ξ) = ξ2, the measurement errors Wi = Yi−θ0(zi) (i = 1, . . . , n), are required to
have mean zero and finite variance, and when when γ(ξ) = |ξ|, then their median is assumed
to be zero, etc.

Suppose θ0 ∈ Θ, where the parameter space Θ is a given subset of the set of all real-valued
functions on Z. We shall study the regression estimator

θ̂n = arg min
θ∈Θ

[

1

n

n
∑

i=1

γ(Yi − θ(zi)) + λ2
nIn(θ)

]

. (1.2)

Here, In(θ) is taken to be the soft thresholding type penalty explained below (equation (1.3)),
and λ2

n is a (to be chosen) smoothing parameter.
Take Qn as the empirical measure of the covariables:

Qn =
1

n

n
∑

i=1

δzi
.

We denote the L2(Qn)-norm of a function θ : Z → R as

‖θ‖Qn
= (

∫

θ2dQn)
1/2.

Now, let ψ1, . . . , ψn be an orthonormal basis in L2(Qn). Each function θ can be written as

θ =
n
∑

j=1

αjψj ,

in L2(Qn). Moreover,

‖θ‖2
Qn

=
n
∑

j=1

α2
j = ‖α‖2

n,

where α = (α1 . . . , αn)
′, and where we denote the Euclidean norm of a vector in Rn by ‖ · ‖n.

For θ =
∑n

j=1 αjψj , the soft thresholding type penalty is

In(θ) =

n
∑

j=1

|αj |. (1.3)

As will be explained in Section 2, in the least squares (LS) case (γ(ξ) = ξ2), the estimator
in (1.2) is in fact the standard soft thresholding estimator (see e.g. Donoho and Johnstone

(1994b) and Donoho (1995)). The least squares estimator (LSE) with soft thresholding is
well studied, and very convenient from a computational point of view. It is however of interest
to investigate other loss functions as well, because the theory for the least squares case depends
on the assumption of existence of second moments of the errors. Moreover, the LS method
requires a smoothing parameter λ2

n which depends on the scale on which the observations
are measured. It depends on (an estimator of) the variance of the errors. Robust regression
estimators can do with a choice for λ2

n which works for all data. This is in particular true for
the least absolute deviations (LAD) estimator (γ(ξ) = |ξ|). Moreover, LAD estimation with
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soft thresholding type penalty is computationally quite feasible. The minimization problem
(1.2) can be solved using a standard L1-fitting routine (see Section 6), which in turn may be
based on a simplex algorithm or accelerated version thereof.

There exists a large amount of literature on penalized M-estimation. We will not give a
complete overview here, but only mention some of the relevant references. Silverman (1982),
Stone (1990), and Barron and Sheu (1991), study the asymptotic theory for the more
classical (spline-)smoothing techniques by penalization (in a density estimation problem).
van de Geer (1999, 2000) studies penalized M-estimation using the entropy of parameter
space. Birgé and Massart (1997, 2001), Barron, Birgé and Massart (1999), Yang

(1999) and Baraud (2000), present general results on model selection via penalization. The
literature on wavelets contains many results on estimation via penalization, see e.g. Donoho,

Johnstone, Kerkyacharian and Picard (1996a,b). Soft thresholding in connection with
LS estimation is also studied in Tibshirani (1996). The soft thresholding type penalty we
consider can be viewed as an special type of L1-penalty. Such penalties are also in Mammen

and van de Geer (1997) in connection with LS estimation, and in Portnoy (1997) in
connection with more general loss functions.

We shall study the large sample behavior (n ≥ 2 large) of estimators of θ0. Throughout,
as n varies, θ0 as well as Θ are allowed to vary as well. However, to avoid too many indices,
we will not always express dependence on n in our notation.

The paper is organized as follows. In the next section, we re-establish a rate of convergence
for the LSE with soft thresholding. We use a method of proof that does not need an explicit
expression for the estimator, so that it is well tailored for transfer to other estimation methods.

In Section 3, we present the extension to robust regression. Here, we need an inequality
derived from empirical process theory.

To illustrate the regression theory, and yet minimize the amount of approximation theory,
we introduce in Section 4 a space of functions governed by a roughness parameter ρ. It
is assumed there that the true regression function θ0 =

∑n
j=1 αj,0ψj has roughness at most

ρ, in the sense that
∑n

j=1 |αj,0|ρ ≤ M . If the parameter ρ (0 ≤ ρ ≤ 2) (as well as the

parameter M) is known, one may consider estimators without penalty. Rates of convergence
for such estimators follow e.g. from entropy calculations. The regression estimators with soft
thresholding type penalty do not require knowledge of ρ, and turn out to be rate-adaptive
in ρ. We also discuss the relation with Besov spaces. In Section 5, we consider the special
case of least absolute deviations (LAD). Section 6 presents a simulation study, where LS is
compared to LAD, when the errors are Laplacian (i.e., double exponential) or Gaussian.

2. Least squares estimation using soft thresholding

In this section, we investigate the classical regression model (1.1), with independent errors

W1, . . . ,Wn with zero expectation and finite variance σ2. Moreover, we let θ̂n denote the LSE
with soft thresholding, i.e.,

θ̂n = arg min
θ=α1ψ1+...+αnψn

[

1

n

n
∑

i=1

(Yi − θ(zi))
2 + 2λ2

n

n
∑

j=1

|αj|
]

(2.1)
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=
n
∑

j=1

α̂j,nψj .

(We have added a factor 2 to the penalty term to simplify the expressions.) The explicit
expression, which explains why the method is called soft thresholding, is the following. Let
α and a be two vectors in Rn, and consider the loss functions

τ 2
soft(α|a) =

(

n
∑

j=1

|αj − aj|2 + 2λ2
n

n
∑

j=1

|αj|
)

,

and

τ 2
hard(α|a) =

(

n
∑

j=1

|αj − aj |2 + λ4
n(#{αj : |αj | > 0})

)

.

The solution of the minimization problem

(a)soft = arg min
α
τ 2
soft(α|a)

is

(aj)soft =











aj − λ2
n, if ãj > λ2

n

0, if |aj | ≤ λ2
n

aj + λ2
n, if aj < −λ2

n

, j = 1, . . . , n.

Furthermore, the solution of the minimization problem

(a)hard = arg min
α
τ 2
hard(α|a)

is

(aj)hard =

{

aj , if |aj| > λ2
n

0, if |aj| ≤ λ2
n

, j = 1, . . . , n.

Now, let us write the empirical coefficients as

α̃j,n =
1

n

n
∑

i=1

Yiψj(zi).

Then the coefficients of the soft thresholding estimator are (α̃n)soft, and those of the hard
thresholding estimator are (α̃n)hard. Thus, the penalized least squares estimator (2.1) is the
soft thresholding estimator.

Consider now “true” coefficients α0. Let

α∗ = (α0)hard.

Then we have

τ 2
hard(α∗|α0) = ‖α∗ − α0‖2

n + λ4
nNn, (2.2)

where Nn = #{|αj,0| > λ2
n}. When λ4

n = σ2/n, this is the bias-variance decomposition for the
projection estimator when the optimal choice of the subspace formed by a subset of ψ1, . . . , ψn
is known.
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We will now establish an upper bound of the form (2.2) for
‖α̂n − α0‖n. We will not use the explicit expression α̂n = (α̃n)soft. This is of importance, be-
cause it will allow the extension to other estimation procedures, where no explicit expressions
are available.

In the theorem, we put

Vj =
1

n

n
∑

i=1

ψj(zi)Wi, j = 1, . . . , n.

Theorem 2.1. Let Bn be the set

Bn = { max
j=1,...,n

|Vj| ≤ λ2
n}.

Then on Bn,

‖α̂n − α0‖2
n ≤ 4(‖α∗ − α0‖2

n + 4λ4
nNn). (2.3)

Proof. Write

Jn = {j : |αj,0| > λ2
n},

and

IN(α) =
∑

j∈Jn

|αj|, IM(α) =
∑

j /∈Jn

|αj|,

and (identifying a function θ with its coefficients α),

In(α) = IN(α) + IM(α) =
n
∑

j=1

|αj|.

Clearly, by the definition of the estimator α̂n,

τ 2
soft(α̂n|α̃n) ≤ τ 2

soft(α∗|α̃n).
Rewrite this to

‖α̂n − α0‖2
n + 2λ2

nIn(α̂n) ≤ 2

n
∑

j=1

Vj(α̂j,n − αj,∗) + 2λ2
nIn(α∗) + ‖α∗ − α0‖2

n.

This gives

‖α̂n − α0‖2
n + 2λ2

nIn(α̂n) ≤ 2 max
j=1,...,n

|Vj|In(α̂n − α∗) + 2λ2
nIn(α∗) + ‖α∗ − α0‖2

n.

On Bn, we find

‖α̂n − α0‖2
n + 2λ2

nIn(α̂n)

≤ 2λ2
nIn(α̂n − α∗) + 2λ2

nIn(α∗) + ‖α∗ − α0‖2
n (2.4)

or, since αj,∗ = 0 for j 6∈ Jn,
‖α̂n − α0‖2

n + 2λ2
nIN(α̂n) + 2λ2

nIM(α̂n) ≤ 2λ2
nIN(α̂n − α∗) + 2λ2

nIM(α̂n)

+2λ2
nIN(α∗) + ‖α∗ − α0‖2

n.
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But then

‖α̂n − α0‖2
n ≤ 2λ2

nIN(α̂n − α∗) + 2λ2
n(IN(α∗) − IN(α̂n)) + ‖α∗ − α0‖2

n

≤ 4λ2
nIN(α̂n − α∗) + ‖α∗ − α0‖2

n

≤ 4λ2
n

√

Nn(
∑

j∈Jn

|α̂j,n − αj,∗|2)1/2 + ‖α∗ − α0‖2
n,

where in the last inequality we applied Cauchy-Schwarz. Now, use that
∑

j∈Jn

|α̂j,n − αj,∗|2 =
∑

j∈Jn

|α̂j,n − αj,0|2 ≤ ‖α̂n − α0‖2
n. (2.5)

We then arrive at

‖α̂n − α0‖2
n ≤ 4λ2

n

√

Nn‖α̂n − α0‖n + ‖α∗ − α0‖2
n.

But this implies (2.3). �

Corollary 2.2. Suppose that for some constant K <∞, the errors W1, . . . ,Wn satisfy

max
i=1,...,n

E exp[W 2
i /K

2] ≤ K.

Then it follows from e.g. van de Geer (2000, Lemma 8.2), that for a constant c depending
on K,

P

(

max
j=1,...,n

|Vj | > c

√

log n

n

)

≤ c exp[− log n

c2
].

Thus, then we may take λ2
n = c

√

log n/n, and obtain

P(‖α̂n − α0‖2
n > 4(‖α∗ − α0‖2

n + 4λ4
nNn)) ≤ c exp[− log n

c2
].

In general, it is clear that the choice of λ2
n depends on the distribution of the errors. As

a consequence, if the errors have heavy tails, the rate of convergence of the LSE with soft
thresholding may be very slow. Therefore, robust methods may provide a welcome alternative
to the LS method.

3. Robust adaptive estimators

The estimator with soft thresholding type penalty, based on the convex loss function γ, is
defined as

θ̂n = min
θ∈Θ, θ=

Pn
j=1 αjψj

[

1

n

n
∑

i=1

γ(Yi − θ(zi)) + λ2
n

n
∑

j=1

|αj|
]

=

n
∑

j=1

α̂j,nψj . (3.1)

The case γ(ξ) = ξ2 was studied in the previous section. In this section, we examine the
robust case, where γ satisfies

|γ(ξ) − γ(ξ̃)| ≤ |ξ − ξ̃|, ξ, ξ̃ ∈ R. (3.2)
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The following notation is convenient. Let for i = 1, . . . , n, Xi = (Yi, zi), let P (i) be the
distribution of Xi and γθ(Xi) = γ(Yi− θ(zi)). Let P̄ =

∑n
i=1 P

(i)/n and denote the empirical
distribution based on X1, . . . , Xn by Pn.

We assume that Eγ(Yi − b) has a unique minimum in b = θ0(zi). This implies

θ0 = arg min
θ

∫

γθdP̄ .

We assume moreover that θ0 ∈ Θ, where Θ is a given class of regression functions.
Now, 0 < ǫ ≤ 1 and let θ∗ =

∑n
j=1 αj,∗ψj ∈ Θ satisfy

∫

(γθ∗ − γθ0)dP̄ ≤ ‖θ∗ − θ0‖2
Qn
/ǫ. (3.3)

In view of Section 2, a natural choice for θ∗ would be the counterpart in the robust setting of
a hard thresholding version of θ0, that is

θ∗ = arg min
θ∈Θ, θ=

Pn
j=1 αjψj

{
∫

γθdP̄ + λ4
n(#{αj : |αj| > 0})

}

.

However, we do not insist on this because (3.3) may not be true for this choice. It should be
noted that we may also choose θ∗ = θ0, in which case (3.3) is automatically true.

We also need the following condition.
For 0 ≤ t ≤ 1, write θt = tθ + (1 − t)θ∗. (We do not require θt ∈ Θ.) Assume that for
t0 ≤ 1/(2K) sufficiently small and θ ∈ Θ, we have for all 0 ≤ t ≤ t0,

∫

(γθt
− γθ0)dP̄ ≥ ǫ‖θt − θ0‖2

Qn
. (3.4)

Since
∫

γθdP̄ is minimized at θ0, condition (3.4) will be a reasonable condition under the
following condition (3.5). We denote the supremum norm by

‖θ‖∞ = sup
z∈Z

|θ(z)|.

Suppose that for some constant K,

sup
θ∈Θ

‖θ‖∞ ≤ K. (3.5)

Condition (3.5) is of course an awkward condition. The choice for the smoothing parameter
in Theorem 3.1 is based on the empirical process inequality of Lemma 3.4. It depends on a
universal constant c.

Theorem 3.1. Suppose that (3.3) and (3.4) hold. Let Jn be any subset of {1, . . . , n}, and
define

Nn = |Jn|, Mn =
∑

j /∈Jn

|αj,∗|.

Suppose that ‖θ∗− θ0‖2
Qn

+λ4
nNn +λ2

nMn ≤ η2, where η = ǫt0/32. Then for λ2
n ≥ c

√

logn/n,
we have

P

(

‖θ̂n − θ0‖2
Qn

≥ 1

η2
(‖θ∗ − θ0‖2

Qn
+ λ4

nNn + λ2
nMn +

1

n
)

)
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≤ c exp[− log n

c2
].

Proof. The proof follows the line of reasoning of Theorem 2.1 on the LSE.
Define t = t0/(1 + ‖θ̂n − θ∗‖Qn

). Consider the convex combination

θ̂t,n = tθ̂n + (1 − t)θ∗.

Using the convexity of the loss function γ, and of the soft thresholding type penalty, we obtain

1

n

n
∑

i=1

γ(Yi − θ̂t,n(zi)) + λ2
nIn(θ̂t,n)

≤ t

{

1

n

n
∑

i=1

γ(Yi − θ̂n(zi)) + λ2
nIn(θ̂n)

}

+(1 − t)

{

1

n

n
∑

i=1

γ(Yi − θ∗(zi)) + λ2
nIn(θ∗)

}

≤ 1

n

n
∑

i=1

γ(Yi − θ∗(zi)) + λ2
nIn(θ∗),

where in the second inequality, we used that θ̂n minimizes the penalized loss function over Θ
and that θ∗ ∈ Θ. We rewrite this in a convenient form, namely

∫

(γθ̂t,n
− γθ0)dP̄ + λ2

nIn(θ̂t,n) ≤ −
∫

(γθ̂t,n
− γθ∗)d(Pn − P̄ ) + λ2

nIn(θ∗)

+

∫

(γθ∗ − γθ0)dP̄ .

By assumption (3.3),
∫

(γθ∗ − γθ0)dP̄ ≤ ‖θ∗ − θ0‖2
Qn
/ǫ.

Moreover, by assumption (3.4)
∫

(γθ̂t,n
− γθ0)dP̄ ≥ ǫ‖θ̂t,n − θ0‖2

Qn
.

So we find

ǫ‖θ̂n − θ0‖2
Qn

+ λ2
nIn(θ̂t,n) ≤ −

∫

(γθ̂t,n
− γθ∗)d(Pn − P̄ ) + λ2

nIn(θ∗)

+‖θ∗ − θ0‖2
Qn
/ǫ.

We will now apply Lemma 3.4. Fot this purpose, we remark that if In(θ̂t,n − θ∗) ≤ n− 1
2 , it

follows immediately that also
‖θ̂t,n − θ∗‖Qn

≤ n− 1
2 . One can show that then also ‖θ̂n − θ∗‖Qn

≤ 1
η
n− 1

2 (this follows from

the same arguments as those used at the end of this proof). We may therefore assume that

In(θ̂t,n − θ∗) > n− 1
2 . Observe also that ‖θ̂t,n − θ∗‖∞ ≤ 1.
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Let Bn be the set

|
∫

(γθ̂t,n
− γθ∗)d(Pn − P̄ )| ≤ c

√

log n

n
In(θ̂t,n − θ∗).

We show in Lemma 3.4 that

P(Bn) ≥ 1 − c exp[− log n

c2
].

On Bn, we find

ǫ‖θ̂t,n − θ0‖2
Qn

+ λ2
nIn(θ̂t,n)

≤ λ2
nIn(θ̂t,n − θ∗) + λ2

nIn(θ∗) + ‖θ∗ − θ0‖2
Qn
/ǫ. (3.5)

This inequality is similar to (2.4) in Theorem 2.1, and we may proceed as there. Then

ǫ‖θ̂t,n − θ0‖2
Qn

≤ 2λ2
n

√

Nn‖θ̂t,n − θ∗‖Qn
+ ‖θ∗ − θ0‖2

Qn
/ǫ+ 2λ2

nMn,

where we now used that for θ̂t,n =
∑n

j=1 α̂t,j,nψj ,

∑

j∈Jn

(α̂t,j,n − αj,∗)
2 ≤ ‖θ̂t,n − θ∗‖2

Qn
,

instead of inequality (2.5). The additional term 2λ2
nMn is due to the fact that αj,∗ may not

be zero for j /∈ Jn.
Invoking ‖θ̂t,n − θ0‖2

Qn
≥ 1

2
‖θ̂t,n − θ∗‖2

Qn
− ‖θ∗ − θ0‖2

Qn
, and ǫ ≤ 1, we find

ǫ

2
‖θ̂t,n − θ∗‖2

Qn
≤ 2λ2

n

√

Nn‖θ̂t,n − θ∗‖Qn
+

2

ǫ
‖θ∗ − θ0‖2

Qn
+ 2λ2

nMn.

But then

‖θ̂t,n − θ∗‖Qn
≤ 8

ǫ
max(‖θ∗ − θ0‖Qn

, λ2
n

√

Nn, λn
√

Mn). (3.6)

Here, we used twice the inequality a+ b ≤ 2 max(a, b) for positive a and b.
The right hand side of (3.6) is less than 8η/ǫ = t0/4 ≤ t0/2. Since

‖θ̂t,n − θ∗‖Qn
= t0

‖θ̂n − θ∗‖Qn

1 + ‖θ̂n − θ∗‖Qn

,

we find

‖θ̂n − θ∗‖Qn

1 + ‖θ̂n − θ∗‖Qn

≤ 1

2
,

so ‖θ̂n − θ∗‖Qn
≤ 1, and hence t = t0/(1 + ‖θ̂n − θ∗‖Qn

) ≥ t0/2. Thus (3.6) gives

‖θ̂n − θ∗‖Qn
= ‖θ̂t,n − θ∗‖Qn

/t ≤ 16

ǫt0
max(‖θ∗ − θ0‖Qn

, λ2
n

√

Nn, λn
√

Mn).

Hence
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‖θ̂n − θ0‖2
Qn

≤ 2‖θ̂n − θ∗‖2
Qn

+ 2‖θ∗ − θ0‖2
Qn

≤ 2(
16

ǫt0
)2 max(‖θ∗ − θ0‖2

Qn
, λ4

nNn, λ
2
nMn) + 2‖θ∗ − θ0‖2

Qn

≤ 1

η2
(‖θ∗ − θ0‖2

Qn
+ λ4

nNn + λ2
nMn).

�

Corollary 3.2. Let

θ∗ = arg min
θ∈Θ, θ=

Pn
j=1 αjψj

{
∫

γθdP̄ + λ4
n(#{αj : |αj | > 0})

}

=

n
∑

j=1

αj,∗ψj .

Take Jn = {j : |αj,∗| > 0}, to find from Theorem 3.1 that under the conditions stated there

P

(

‖θ̂n − θ0‖2
Qn

≥ 1

η2
(‖θ∗ − θ0‖2

Qn
+ λ4

nNn +
1

n
)

)

≤ c exp[− log n

c2
].

Theorem 3.1 and its corollary show that for the robust penalized regression estimator,
one has a similar result as for the penalized LSE. Moreover, the robustness condition (3.2)
implies that there exists a universal value for the smoothing parameter, that works well for
all error distributions. The optimal value for the smoothing parameter is as yet not clear.
The empirical process inequality of Lemma 3.4 gives an upper bound λ2

n ≥ c
√

log n/n.
The remainder of this section is on the empirical process inequality of Lemma 3.4. Before

stating this lemma, we need the following auxiliary result, where we use the notation a∨ b =
max(a, b) (a ∧ b = min(a, b)).

Lemma 3.3. For all M > 0, the following upper bound holds

P

(

sup
In(θ)≤M

|
∫

(γθ − γ0)d(Pn − P̄ )| ≥ 16M

√

log n

n

)

≤ exp[−(M2 ∨ 1) logn

2
].

Proof. Define the following empirical process

Z = sup
In(θ)≤M

∣

∣

∣

∣

∫

(γθ − γ0)

∣

∣

∣

∣

d(Pn − P̄ ).

Set
Ui(θ) = γ(Yi − θ(zi)) − γ(Yi), i = 1, . . . , n.

An Hoeffding type inequality, proved by Massart (2000), says that for all u ≥ 0 we have

P (Z ≥ E(Z) + u) ≤ exp

[

−n
2u2

8b2n

]
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where bn satisfies

sup
In(θ)≤M

n
∑

i=1

‖Ui(θ) −E(Ui(θ))‖2
∞ ≤ b2n.

Here, ‖U‖∞ denotes the sup-norm of the random variable U .
Since γ is 1−Lipschitz (condition (3.2)), and ‖θ‖Qn

≤ In(θ), we have that

sup
In(θ)≤M

n
∑

i=1

‖Ui(θ) − E(Ui(θ))‖2
∞

≤ 4n sup
In(θ)≤M

‖θ‖2
Qn

≤ 4n(M2 ∧ 1).

As a result, we find the upper bound b2n ≤ 4n(M2 ∧ 1). A symmetrization procedure (see
e.g., Ledoux and Talagrand (1991) or van der Vaart and Wellner (1996)) implies
the following bound:

E(Z) = E

[

sup
In(θ)≤M

1

n

∣

∣

∣

∣

∣

n
∑

i=1

[Ui(θ) −E(Ui(θ))]

∣

∣

∣

∣

∣

]

≤ 2E

[

sup
In(θ)≤M

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫiUi(θ)

∣

∣

∣

∣

∣

]

where the ǫi’s are Rademacher random variables. Using the fact that γ is 1-Lipschitz, the
contraction principle in Ledoux and Talagrand (1991, Theorem 4.12) gives the following
bound:

E

[

sup
In(θ)≤M

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫiUi(θ)

∣

∣

∣

∣

∣

]

≤ 2E

[

sup
In(θ)≤M

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫiθ(zi))

∣

∣

∣

∣

∣

]

= 2E

[

sup
In(θ)≤M

∣

∣

∣

∣

∣

1

n

n
∑

j=1

αj

n
∑

i=1

ǫiψj(zi)

∣

∣

∣

∣

∣

]

≤ 2ME

[

max
j=1,...,n

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫiψj(zi)

∣

∣

∣

∣

∣

]

.

By Hoeffding’s inequality (Hoeffding (1963)) and using results in van der Vaart and

Wellner (1996, Chapter 2.2), we find the bound 6M
√

logn
n

for last quantity. As a conse-

quence we get

P[Z ≤ 12M

√

log n

n
+ u] ≥ 1 − exp

(

− nu2

32(M2 ∧ 1)

)

.

Taking u = 4
√

logn
n
M completes the proof of the lemma. �

Lemma 3.3 is used in the next lemma, which is in turn a basic ingredient of Theorem 3.1.
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Lemma 3.4. There exists a constant c such that

P



 sup
‖θ−θ∗‖∞≤1, In(θ−θ∗)>n−

1
2

|
∫

(γθ − γθ∗)d(Pn − P̄ )|
In(θ − θ∗)

≥ c

√

logn

n





≤ c exp[− log n

c2
].

Proof. Without loss of generality, we may assume θ∗ ≡ 0. We show in the previous lemma
that we have the concentration inequality

P

(

sup
In(θ)≤M

|
∫

(γθ − γ0)d(Pn − P̄ )| ≥ 16M

√

log n

n

)

≤ exp[−(M2 ∨ 1) logn

2
].

Take j0 as the smallest integer such that j0 + 1 > log2

√
n. Then we find

P



 sup
n−

1
2<In(θ)≤1

|
∫

(γθ − γ0)d(Pn − P̄ )|
In(θ)

≥ 32

√

log n

n





≤
j0
∑

j=0

P

(

sup
In(θ)≤2−j

|
∫

(γθ − γ0)d(Pn − P̄ )| ≥ 16

√

logn

n
2−j

)

≤ (log2

√
n + 1) exp[− log n

2
]

≤ C0 exp[− log n

c2
].

Moreover,

P

(

sup
In(θ)>1

|
∫

(γθ − γ0)d(Pn − P̄ )|
In(θ)

≥ 32

√

log n

n

)

≤
∞
∑

j=0

P

(

sup
In(θ)≤2j+1

|
∫

(γθ − γ0)d(Pn − P̄ )| ≥ 16

√

logn

n
2j+1

)

≤
∞
∑

j=0

exp[−(log n)22(j+1)

2
]

≤ C1 exp[− log n

c2
].

�
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4. An illustration with roughness parameter ρ

In this section, we illustrate the consequences of Theorem 2.1 and Theorem 3.1 for a special
case. Consider the set of functions

Θρ = {θ =

n
∑

j=1

αjψj ,

n
∑

j=1

|αj|ρ ≤ 1}, (4.1)

where 0 ≤ ρ ≤ 2. Here, for ρ = 0, we use the convention x0 = 1 if x is non zero and 00 = 0.
Since the sets Θρ are increasing in size as ρ increases, we may think of ρ as a roughness
parameter. Thus, the smaller ρ the “smoother” the functions in Θρ will be. At the extremes,
ρ = 0 implies that there is at most 1 non-zero coefficient, whereas ρ = 2 only requires that θ
is within the n-dimensional unit ball.

We will first consider in Subsection 4.1, the case where it is known that for a given ρ,
θ0 ∈ Θρ. In that situation, one may consider an estimation method without penalty. The
rate of convergence can then be derived from the entropy of Θρ. Subsection 4.2 computes
this entropy. In Subsection 4.3, we show that the estimators with soft thresholding type
penalty (which do not require knowledge of ρ) converge with the same rate as the one found
in Subsection 4.1. Subsection 4.4 discusses the relation with Besov spaces.

4.1. The case ρ known.

Lemma 4.1. Suppose Θ ⊂ Θρ, where 0 < ρ < 1. Let

θ̂n = arg min
θ∈Θ

n
∑

i=1

γ(Yi − θ(zi))

be the regression estimator without penalty. When γ(ξ) = ξ2 (the least squares case), assume
that for some K <∞,

max
i=1,...,n

E exp[W 2
i /K

2] ≤ K,

and when the Lipschitz condition (3.2) holds (the robust case), assume (3.4) for θ∗ = θ0.
Then there exist a constant C, depending on K in the LS case, and on ρ, such that for all
T ≥ C,

P(‖θ̂n − θ0‖Qn
≥ T (

logn

n
)

2−ρ

4 ) ≤ C exp[−n
ρ

2 (log n)
2−ρ

2

C2
].

Proof. This follows from general results in van de Geer (2000, Theorem 9.1 and Theorem
12.3), using the entropy given in Lemma 4.3 below. �

The rate of convergence (log n/n)
2−ρ

4 corresponds to the minimax rate over Θρ, when the
errors are i.i.d. Gaussian random variables (see Donoho and Johnstone (1994a)).

The results of van de Geer (2000, Theorem 9.1 and 12.3) can be also used for the case
1 ≤ ρ < 2, and the resulting rates will then be sub-optimal (i.e. slower than the minimax
rate over Θρ).
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4.2. The entropy of Θρ.

Definition 4.2. Let T be a (subset) of a metric space. The δ-covering number N(δ, T )
is the minimal number of balls with radius δ > 0 necessary to cover T . The δ-entropy is
H(δ, T ) = logN(δ, T ).

In our situation, we need entropies of subsets of L2(Qn). Note that L2(Qn) is essentially
the n-dimensional Euclidean space Rn.

Of course, the smaller ρ, the smaller the entropy. Bounds are given in the next lemma
(where we omit the two extreme but trivial cases ρ = 0 and ρ = 2).

Lemma 4.3. Consider the following subset of Rn:
An = {α = (α1, . . . , αn)

′ :
∑n

j=1 |αj|ρ ≤ 1}, with 0 < ρ < 2. We have for some constant A,
depending only on ρ,

H(δ,An) ≤ Aδ−
2ρ

2−ρ

(

logn + log
1

δ

)

, δ > 0. (4.2)

Proof. Let ǫ = δ
2

2−ρ . Define for α ∈ An,

Nα(ǫ) = #{αj : |αj| > ǫ}.
Moreover, let

N(ǫ) = ⌊ǫ−ρ⌋,
where ⌊x⌋ denotes the integer part of x > 0.

We have

max
α∈An

Nα(ǫ) ≤ N(ǫ).

It suffices to have a δ-approximation of the coefficients larger than ǫ, neglecting the other
coefficients. That is, let α ∈ An, and suppose that for some ᾱ,

∑

|αj |>ǫ

|αj − ᾱj|2 ≤ δ2.

In addition, suppose that ᾱj = 0 for all |αj| ≤ ǫ. Then we have

‖α− ᾱ‖2
n ≤ δ2 +

∑

|αj |≤ǫ

|αj|2 ≤ 2δ2,

provided
∑

|αj |≤ǫ

|αj|2 ≤ ǫ2−ρ.

But this follows from
∑

|αj |≤ǫ

|αj|2 =
∑

|αj |≤ǫ

|αj|2−ρ+ρ

≤
∑

|αj |≤ǫ

|αj |ρǫ2−ρ

≤ ǫ2−ρ.
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The number of ways to choose N(ǫ) ≤ n coefficients out of n is
(

n

N(ǫ)

)

≤ nN(ǫ).

Moreover, the δ-entropy of a unit ball in Euclidean space with dimension N(ǫ) is at most
5N(ǫ) log 1

δ
(see e.g. van de Geer (2000)). So, we arrive at

H(
√

2δ,An) ≤ N(ǫ)

(

5 log
1

δ
+ logn

)

,

where ǫ = δ
2

2−ρ , and N(ǫ) ≤ ǫ−ρ. �

4.3. The case ρ unknown: adaptation.

Lemma 4.4. Let

θ̂n = arg min
θ∈Θ

[

1

n

n
∑

i=1

γ(Yi − θ(zi)) + λ2
nIn(θ)

]

where In(θ) is the soft thresholding type penalty (1.3). When γ(ξ) = ξ2 (the least squares
case), assume that for some K <∞,

max
i=1,...,n

E exp[W 2
i /K

2] ≤ K,

and when the Lipschitz condition (3.2) holds (the robust case), assume (3.4) for θ∗ = θ0.
Then there exists a constant c, which depends on K in the LS case, and which is universal in
the robust case, such that for λn = c

√

log n/n, we have

P

(

‖θ̂n − θ0‖Qn
≥ c(

logn

n
)

2−ρ

4

)

≤ c exp[− log n

c2
].

Proof. As in the proof of Lemma 4.3 we employ the fact that if

n
∑

j=1

|αj|ρ ≤ 1,

then

Nα(ǫ) = #{αj : |αj| > ǫ} ≤ ǫ−ρ.

It is also easy to see that in that case, for ρ ≤ 1,

Mα(ǫ) =
∑

|αj |≤ǫ

|αj| =
∑

|αj |≤ǫ

|αj|1−ρ+ρ ≤ ǫ1−ρ.

Thus, in Theorem 2.1, Nn ≤ λ−2ρ
n , which gives by Corollary 2.2 the result for the LS case.

Moreover, taking in Theorem 3.1, Jn = {j : |αj,0| > λ2
n}, there gives Nn ≤ λ−2ρ

n and

Mn ≤ λ
2(1−ρ)
n . This yields the result for the robust case. �
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4.4. Relation with Besov spaces. In the literature on adaptive estimation, one often con-
siders so-called Besov spaces Bσ,p,q([0, 1]d). Such spaces are intrinsically connected to the
analysis of curves since the scale of Besov spaces yields the opportunity to describe the reg-
ularity of functions, with more accuracy than the classical Hölder scale. General references
about Besov spaces are Bergh and Löfström (1976), Besov, Il’in and Nikol’skii (1978),
Edmund and Triebel (1992) and DeVore and Lorentz (1993). This subsection discusses
the link with our roughness parameter ρ. The notation Bσ,p,q([0, 1]d) refers to the case of func-
tions on the d-dimensional unit cube, with “smoothness” σ, and where p and q refer to Lp-
and Lq-norms with respect to Lebesgue measure. We will not go into the details, but mainly
want to show that, apart from logarithmic factors, such Besov spaces correspond to a rough-
ness parameter ρ equal to ρ = 2/(2s + 1), where s is the “effective” smoothness σ/d, and
where we assume ρ ≤ p (see Lemma 4.5). Similar observations can be found in Donoho

and Johnstone (1996). The application of Lemma 4.3 then yields a bound for the entropy.
However, in Besov spaces, the coefficients at higher levels tend to be smaller, i.e., there is
more structure than as can be described by our roughness parameter ρ. As a result, it turns
out that Besov spaces have entropies without logarithmic factors (see Lemma 4.6).

Consider a wavelet basis ψj,k of L2(Qn) with regularity r such that r ≥ s. We recall
that a wavelet regularity is expressed through its number of vanishing moments, see e.g.
Meyer (1987) or Mallat (1998). Then a Besov norm is equivalent to an appropriate
norm in the sequence space, that is, the space of the wavelet coefficients, see DeVore and
Lorentz (1993) or Donoho, Johnstone, Kerkyacharyan and Picard (1996a,b) We
take a sequence space as a starting point (and consider for simplicity the case corresponding
to d = 1 (σ = s) in the Besov interpretation). The coefficients α are now indexed by two
integers: α = {αj,k}, where k runs from 1 to 2j , and where j ∈ {1, 2, . . . , J} can be seen as a
zoom-level.

Let Bs,p,q be the set of coefficients {αj,k} that satisfy






J
∑

j=1

2j((2s+1) p

2
−1) q

p







2j
∑

k=1

|αj,k|p






q

p







1
q

≤ 1. (4.3)

When the αj,k are the coefficients of the appropriate Besov basis, this quantity is equivalent
to the Besov semi-norm. Throughout, we assume s ≥ 0, p ≥ 1, and q ≥ 1. In the Besov space
interpretation, Bs,p,q (with J = ∞) corresponds (in the sense of norm equivalence) to a Besov
ball in the space Bs,p,q([0, 1]).

Lemma 4.5. Suppose that α = {αj,k} satisfies (4.3), with
ρ = 2/(2s+ 1) ≤ min(p, q), and J <∞. Then

J
∑

j=1

2j
∑

k=1

|αj,k|ρ ≤ J
q−ρ

q . (4.4)

Proof. By Hölder’s inequality, for a sequence a1, . . . , aL, and for t ≥ 1,

L
∑

l=1

|al| ≤ L
t−1

t

(

L
∑

l=1

|al|t
)

1
t

. (4.5)
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Apply this first with L = J , |aj| =
∑2j

k=1 |αj,k|ρ, and t = q/ρ. Then we find

J
∑

j=1







2j
∑

k=1

|αj,k|ρ






≤ J
q−ρ

q







J
∑

j=1







2j
∑

k=1

|αj,k|ρ






q

ρ







ρ

q

. (4.6)

Next, apply (4.5) with L = 2j, |aj,k| = |αj,k|ρ, and t = p/ρ. This yields






2j
∑

k=1

|αj,k|ρ






≤







2
j(p−ρ)

p (
2j
∑

k=1

|αj,k|p)
ρ

p







.

Do this for each j = 1, . . . J , and insert the result in (4.6):

J
q−ρ

q







J
∑

j=1







2j
∑

k=1

|αj,k|ρ






q

ρ







ρ

q

≤ J
q−ρ

q







J
∑

j=1







2
j(p−ρ)

p (
2j
∑

k=1

|αj,k|p)
ρ

p







q

ρ







ρ

q

= J
q−ρ

q







J
∑

j=1

2j(
p−ρ

p
) q

ρ







2j
∑

k=1

|αj,k|p






q

p







ρ

q

≤ J
q−ρ

q ,

since

(
p− ρ

p
)
q

ρ
= ((2s+ 1)

p

2
− 1)

q

p
.

�

Remark 4.1. One can also define spaces Bs,p,q with p = ∞ and/or q = ∞. Condition
(4.3) is then to be understood with the usual adjustments. Note that Bs,p,q ⊂ Bs,p,∞.

In our applications, the number of levels J is logarithmic in n. The entropy of the spaces
Bs,p,q can now be bounded by combining Lemma 4.3 with Lemma 4.5. However, it turns out
that this will result in a bound with an unnecessary (logn)-term. The entropy bound without
logarithmic factors can be found in Birman and Solomjak (1963) for the case of Sobolev
spaces, and in Birgé and Massart (2000) for the generalization to Besov spaces.

We consider Bs,p,q as a subset of the Euclidean space R(2J−2), with Euclidean norm ‖ · ‖
(possibly J = ∞, in which case R∞ should be understood as l2(N)).

Lemma 4.6. Let ρ = 2/(2s+ 1) < p. For a constant A depending on p and s,

H(δ,Bs,p,∞) ≤ Aδ−
1
s , δ > 0. (4.7)
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Proof. This is shown in Birgé and Massart (2000). In fact, they show that the δ-entropy for
the Lp′ (Lebesgue measure)-norm, of a Besov ball with radius 1 in Bσ,p,∞([0, 1]d), is bounded

by Aδ−
1
s , provided s = σ

d
> 1

p
− 1

p′
. �

5. Least absolute deviations

The LAD estimator with soft thresholding type penalty is

θ̂n = min
θ∈Θ, θ=

Pn
j=1 αjψj

[

1

n

n
∑

i=1

|Yi − θ(zi)| + λ2
n

n
∑

j=1

|αj|
]

=
n
∑

j=1

α̂j,nψj .

Note that this estimator has a certain scale invariance, in the sense that the optimal value
of the smoothing parameter does not depend on the scale of the data. In particular, the
smoothing parameter will not depend on (an estimate of) the variance of the data.

In order to apply Theorem 3.1, we need to verify conditions (3.3) and (3.4). Condition
(3.3) depends on the choice θ∗ and moreover on the choice of the basis functions ψ1, . . . , ψn.
To avoid digressions, we simply take θ∗ = θ0, so that (3.3) is automatically true.

We will require the boundedness condition (3.5), i.e., that for some constant K,

sup
θ∈Θ

‖θ‖∞ ≤ K. (6.1)

Let us (for simplicity) assume that W1, . . . ,Wn are i.i.d. copies of a random variable W
(with median zero). Suppose W has density fW with respect to Lebesgue measure, and that
for some η > 0,

fW (w) ≥ η, for all |w| ≤ η. (6.2)

Then indeed, one may verify (see also van de Geer (1990)) that (3.4) holds with t0 =
min(1

2
, η

2K
). Thus, when (6.1) and (6.2) are met, then Theorem 3.1 holds with θ∗ = θ0.

Remark 6.1. It is not a good idea to apply LAD with soft thresholding in the sequence
space. To see why, recall that the empirical coefficients are given by

α̃j,n =
1

n

n
∑

i=1

Yiψj(zi), j = 1, . . . , n.

Renormalize to
Ỹj =

√
nα̃j,n, j = 1, . . . , n,

with expectation (assuming the errors are centered)

EỸj =
√
nαj,0 := ϑj,0, j = 1, . . . , n.

The LAD estimator of ϑ0 is now

ϑ̂n = arg min
ϑ∈Rn

{

n
∑

j=1

|Ỹj − ϑj | +
√
nλ2

n

n
∑

j=1

|ϑj |
}

.
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Thus, as soon as
√
nλ2

n > 1, ϑ̂n ≡ 0.
Suppose now that ϑ0 remains bounded, say that |ϑj,0| ≤ 1 for all j. This is perhaps not a

natural condition, but it is the sequence space counterpart of (6.1), and we need it in order
to be able to apply Theorem 3.1. But then result of Theorem 3.1 is actually trivial:

1

n

n
∑

j=1

ϑ2
j,0 =

1

n

∑

j∈Jn

ϑ2
j,0 +

1

n

∑

j /∈Jn

ϑ2
j,0

≤ Nn

n
+

1

n

∑

j /∈Jn

|ϑj,0| =
Nn

n
+

1√
n

∑

j /∈Jn

|αj,0|.

6. Simulation study

In our simulation study, we consider LS and LAD. In the LAD case, we will not restrict
the functions θ to be bounded in sup-norm by some constant (condition (6.1)).

The signals have been generated using the software MATLAB. We consider the Heavisine
function and the Doppler function with n = 100 observations, and decompose these two
functions onto a wavelet basis using a Daubechies wavelet with 8 vanishing moments.

As error distribution, we considered the standard centered Gaussian distribution with vari-
ance 3, and also the Laplacian (i.e., double exponential) distribution, with mean zero and
variance 3.

The LS estimator is computed using its explicit expression whereas the LAD estimator
must be numerically computed. Since the LAD estimator is defined as the solution of an
L1-minimization, a standard minimization algorithm does not give good results. It is however
a standard L1-fitting problem. To see why, write Yi = 0 for i = n + 1, . . . , 2n (data augmen-
tation). Moreover, when i ∈ {n + 1, . . . , 2n} take ψj(zi) = λ2

n for i = j + n , and ψj(zi) = 0
for i 6= j+n, j = 1, . . . , n. To obtain the LAD estimator with soft thresholding type penalty,
we now have to minimize over α ∈ Rn

2n
∑

i=1

|Yi −
n
∑

j=1

αjψj(zi)|.

This is a standard L1-regression problem (with 2n observations and n parameters).
Following ideas developed by Bruce, Sardy and Tseng (1999) for the Huber loss func-

tion, we consider the minimization problem as an optimization problem with Lagrange mul-
tipliers and the associated dual, see for instance Rockafellar (1970). A primal-dual al-
gorithm with a log-barrier penalty, described by Chen, Donoho and Saunders (1999)
provides an efficient numerical method to compute the LAD estimator.

We have looked at 9 cases, corresponding to different values of the smoothing-parameter
λ2
n including the theoretical optimal value for the Gaussian case λ2

n/σ =
√

2 logn/n = 0.303
that corresponds to the 8th line. The four tables (Figures 4-7) summarize the performance of
the LS and LAD estimators in terms of mean square error (MSE). The numbers represent an
average over 20 simulations. In order to make comparison of LS and LAD relevant, we have
put on a same line the results with λ2

n/σ for the LS and λ2
n for the LAD. We also added a line



where comparisons are made for the optimal cases, i.e., smallest ‖θ̂n − θ0‖Qn
(corresponding

to different smoothing parameters).

In these simulations, we can see that LAD works better in the Laplacian case, and LS
works better in the Gaussian case (as is to be expected). In the LS case, the value λ2

n/σ =
√

2 logn/n = 0.303 is optimal when the errors are Gaussian, but it is too large when the
errors are Laplacian.

We show the results for some significant simulations. The LS estimator is represented in
dotted lines and the LAD estimator is represented with solid lines. The figures 1-2 show the
results obtained for the two different functions Doppler and Heavisine with Gaussian noise.
The last figure, figure 3, shows the results when taken Heavisine function corrupted by Lapla-
cian noise. We can observe that LAD catches better the irregularity of the two functions
Heavisine and Doppler, when LS is too smooth. However LAD with a wavelet basis may have
limitations because its ability to estimate spatially inhomogeneous signals might conflict with
the goal of robustness to filter noise.
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Heavisine function with Gaussian errors.

λ2 MSE for LS MSE for LAD
0.0303 (1) 0.7535 0.605
0.0607 (2) 0.5229 0.3994
0.1011 (3) 0.4782 0.3737
0.1517 (4) 0.4934 0.4507
0.2124 (5) 0.4749 0.4612
0.2427 (6) 0.3451 0.4828
0.2731 (7) 0.2821 0.5003
0.3034 (8) 0.2238 0.5601
0.6070 (9) 0.5852 0.6242
optimum 0.2238 at (8) 0.3737 at (3)

Figure 4.

Heavisine function with Laplacian noise.

λ2 MSE for LS MSE for LAD
0.0303 (1) 1.7051 1.5157
0.0607 (2) 1.010 0.954
0.1011 (3) .8201 0.6238
0.1517 (4) 0.7853 0.5896
0.2124 (5) 0.6021 0.4324
0.2427 (6) 0.5925 0.4654
0.2731 (7) 0.5896 0.5870
0.3034 (8) 0.6012 0.6925
0.607 (9) 0.6238 0.7021
optimum 0.5896 at (7) 0.4324 at (5)

Figure 5.
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Doppler signal with Gaussian errors.

λ2 MSE for LS MSE for LAD

0.0303 (1) 0.5862 0.8103
0.0607 (2) 0.5210 0.7801
0.1011 (3) 0.3521 0.6610
0.1517 (4) 0.2625 0.5218
0.2124 (5) 0.2212 0.3451
0.2427 (6) 0.1521 0.2821
0.2731 (7) 0.1330 0.3299
0.3034 (8) 0.090 0.4445
0.6070 (9) 0.3928 0.5510
optimum 0.090 at (8) 0. 2821 at (6)

Figure 6.

Doppler signal with Laplacian errors.

λ2 MSE for LS MSE for LAD

0.0303 (1) 0.736 0.901
0.0607 (2) 0.6260 0.7700
0.1011 (3) 0.5218 0.6101
0.1517 (4) 0.5680 0.5018
0.2124 (5) 0.6321 0.3451
0.2427 (6) 0.7081 0.2821
0.2731 (7) 0.8588 0.8229
0.3034 (8) 0.9097 0.8429
0.607 (9) 0.9254 0.9545
optimum 0.5218 at (3) 0.2521 at (6)

Figure 7.
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